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ELASTIC WAVES PRODUCED BY LONGITUDINAL IMPACT
ON A SYSTEM WITH SYMMETRICALLY BRANCHED RODS

JAMES P. LEE

Division of Applied Mathematics, Brown University, Providence, R.I.

Abstract-The problem of the propagation of a longitudinal elastic wave which is travelling along a thin uniform
rod at the end of which a branched, symmetrically arranged system of rods is joined is treated analytically.
The symmetry condition greatly simplifies the analysis and enables the problem to be treated as a two-dimensional
one. The theory used for the propagation of longitudinal waves along the rods is the one-dimensional one while
flexural wave propagation is treated using the Timoshenko theory. The numerical results obtained with this
analysis are found to agree well with experimental observations.
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arbitrary functions of angular frequency
bar velocity, E' is Young's modulus and p' is the density
flexural wave propagation velocity of first and second mode according to the Timoshenko
theory
radius of gyration, I moment of inertia of the cross section, n cross sectional area
effective shear modulus in the branches
number of branches
angular frequency
time
longitudinal displacement
longitudinal displacement of incident, reflected and transmitted waves
lateral displacement
lateral displacement due to bending
lateral displacement due to shear
coordinate systems
nondimensional ratio
density of main rod and its branches respectively
nondimensional parameter depends on the Poisson's ratio v and shape of the cross-section

INTRODUCTION

THE longitudinal elastic impact of a rod with discontinuity in cross-sectional area, elastic
modulus and density was treated by Rayleigh in 1894 [1]. He found that such discontinuities
in general gave rise to reflected waves. Ripperger and Abramson [2] analyzed the reflection
and transmission of flexural waves for the same problem and obtained the coefficients
for an infinitely long wave train. In these two cases the axes of the rods were taken as
collinear and only waves of the same type were generated. Recently wave propagation
in rods of different geometries have been considered. Morley [3] solved the problem of
a naturally curved rod and derived a Timoshenko-type equation for rods with large and
small curvatures. Lee and Kolsky [4] solved the problem of a sharply bent rod subjected
to longitudinal impact. In the former case axial and lateral displacements are coupled
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(2a)

(2b)

everywhere in the rod, while in the latter problem, coupling occurs only at the bend.
The purpose of this paper is to investigate the longitudinal impact on a rod symmetrically
split into n (integer equal to or greater than 2) branches.

This problem has practical significance; dynamic impact on a beam (n = 2) such as
the case of a beam supporting a hoist, an elevator car, the simplified problem of firing a
rocket symmetrically supported by a tripod (n = 3). All serve as good examples of this
problem.

ANALYSIS

In the mathematical treatment that follows it is assumed that a longitudinal elastic
wave travels down the rod and is reflected and transmitted at the boundary where the
branches separate. The boundary conditions used at the junction are continuity of the
displacements and continuity of the stresses.

For the longitudinal waves, a one-dimensional bar theory is used, i.e. it is assumed that

02U 02U
ail = c6 ox2 (1)

where U is the longitudinal displacement at a coordinate x and a time t, Co = (E/p)+ where
E is Young's modulus and p is the density of the bar. For the propagation of flexural
waves, the Timoshenko equations in coupled form, i.e.

oVs +k2e,03vb _ e'k
2

03Vb = 0
ox ox3 c6 oxot2

02V e' 02V e' 02V__s b s = 0
ox2 c6 ot2 c6 ot2

are used to describe the motion of the rods. In these equations the total deflection v is
broken into two parts, onedueto bending Vb and the other due to shearing VS , and v = Vb +Vs
(see e.g. Miklowitz [5]).

Let us consider an incident sinusoidal wave train of angular frequency p and amplitude
Ao propagating in increasing x direction, we have the expression

Uo = Ao exp[ip(t--x/co)]. (3)

As a result of symmetry, the axis of the main rod is restricted from moving laterally and
the reflected flexural wave is identically zero. Only a longitudinal wave is reflected back
in the main rod, i.e.

U, = A, exp[ip(t +x/co)].

In each branch, in general, both longitudinal and flexural waves are generated, i.e.

UT = AT exp[ip(t - ~/co)]

2

V = Vb+Vs = L (l+IX)Bjexp[ip(t-~/Cj)]
j= 1

(j = 1,2)

(4)

(5)

(6)
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where C1 and C2 are here the phase velocities of the first and the second modes according
to the Timoshenko equations (2) and

and

2

Vb = L Bjexp[ip(t-~/Cj)]
j= 1

2

Vs = L IXjBjexp[ip(t-~/Cj)]
j= 1

(7a)

(7b)

Ao, A" AT' B j are functions of p and are complex in nature. Ao has to be determined from
the initial condition of impact while Ar, AT' Bj are determined by the following conditions
at x = ~ = O.

(a) displacement in x direction must be continuous, i.e.

Uo- ur = uT cos () - V sin () (8)

(b) as a result of the symmetry condition, there is no lateral motion of the main rod,
hence the resultant displacement of each branch in the y direction must vanish, i.e.

uTsin()+vcos() = 0

(c) since (for a rigid joint) at the boundary the angle of rotation must be zero

vb,C = 0

and finally
(d) the forces in the x direction must be balanced, i.e.

pcQ(UO.t+Ur,t) = np'c'Q'uT,t cos ()+nk'G'Q'vs,~ sin ()

(9)

(10)

(11)

where a comma denotes differentiation with respect to the index which follows.
Due to the symmetry of the system, the moment balance condition and the condition

that the forces must be balanced in the y direction are automatically satisfied.
Substituting equations (3H7) into equations (8Hll), we get

2

Ao-Ar-ATcos()+ L (1+lX j )Bj sin 0 = 0
j= 1

2

ATsin()+ L (1+IX)Bjcos() = 0
j= 1

2 B.L -1= 0
j= 1 Cj

np'c'Q' 2 nk'G'Q'(IX' sin ())
Ao+Ar---n.-cos () AT + L Q _J__ Bj = 0

PCU j= 1 pc Cj

solving equations (12HI5) for An AT and B j , we obtain

A r = [1 l+klCos2~+k2sin28JAo

(12)

(13)

(14)

(15)

(16)
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where
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A
T
=[ 2cos() JA

O1+k l cos2 ()+k 2 sin 2
()

2 sin ()
B l = 2· 2 A ok3(I+klcos ())+k4 sIll ()

2 sin ()(C2/C l )
B 2 = 2· 2 Aok3 (1 + kl cos ()) + k4 SIll ()

np'C'n'
k l =-­

pcn

k _ nk'G'n' ((X 2- (Xl)
2 - pcn (1+(X2)C2-(I+(Xl)Cl

(l + (X2)C2- (1 + (Xdc lk3 = -'---=----=-----'---'--=­
c l

(17)

(18)

(19)

(20a)

(20b)

(20c)

(21a)

nk'G'n' (X - (X
k

4
= _2__1 (20d)

pcn C2

As may be seen from equations (16HI9) when n' = 0 then Ar = - Ao. This result
checks with the wave reflected from the free end of a rod. For () = () we have B l == B 2 == 0

np'c'n' - pcn
A = ----c-::-,---~

r np'c'n' +pcn
and

2pcn
AT = ---:-'::-:----=­

np'c'n' +pcn

these results agree with those in [2].

(21 b)

NUMERICAL SOLUTIONS AND COMPARISON WITH EXPERIMENT

To serve as an example, numerical solutions are obtained in this section and part of
the results are compared with Ranganath's experimental results [6]. Ranganath solved
the problem of the normal impact of an infinite elastic beam by a semi-infinite elastic rod.
In his work, a 10 in. long i in. diameter striker rod was accelerated by a gas gun and impinged
on a i in. transmitter bar of 2 ft length resting on a k x i in. long rectangular beam. The
incident and reflected longitudinal pulses in the transmitted bar and the flexural pulses
transmitted into the beam were then recorded using strain gages. Some of his results are
shown in Figs. 4 and 5 for purposes of comparison. Dimensions of the beam and the rod
and the Poisson's ratio of the material used were as follows:

thickness of the beam = kin.;
width of the beam = i in. ;

diameter of the transmitted rod = i in. ;
Poisson's ratio = 0·3;

length of the transmitter rod = 24 in.
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The beam is assumed to be very long so that the reflected waves from the ends are not
included in the analysis.

To check the validity of the theory presented here, numerical results were obtained
using the data given above, so that Ranganath's experimental results could be used for
comparison. Instead of using a step load as was assumed in his analysis, an incident pulse
with a 8 p,sec rise time and a 60 p,sec duration was used as being closer to reality.

The normalized incident longitudinal pulse can be represented by

(22)

where a = 10- 6 sec.
To simplify the computation, the pulse was placed at the middle of the chosen funda­

mental interval To (= 600 p,sec), thus all the sine terms vanish and t 1 = 270 p,sec and
t 2 = 330 p,sec.

The fundamental frequency used was then 1·05 x 104 rad./sec and the summation was
taken over the first 200 terms (up to a frequency of2·10 x 106 rad./sec) which was more than
sufficient. It was found that even the summation of the first 100 terms gave fairly accurate
results. The cut-off frequency for the second Timoshenko mode is 6·27 x 106 rad./sec, so
in this region C1 is real and C2 = iV2 (where V2 is real) is purely imaginary.

If we let A r = A~+iA:*, AT = A~+iA~*, B1 = B!+iB!* and B2 = B!+iB!*, then
the normalized reflected longitudinal strain pulse in the main rod and the transmitted
longitudinal and flexural strain pulses in each branch are given, respectively, by

200 kp
GR = L _0 [A~ sin(kpot)+ A:* cos(kPot)]A6*

k= 1 Co

200 kp
GT = L --.Q[A~ sin(kpot)+ A~* cos(kPot)]A6*

k= 1 C

and

200 k2p2{I
6F = L -8

0
l[B! cos(kPo(t-~/C1»-B!*sin(kpo(t-~/c2))]

k= 1 C1

-(B! cos kpot- B!* sin kPot) exp( - P~/V2)/V~} A~*

and the results are plotted in Figs. 1-5.
Figure 1 represents the normalized incident and reflected longitudinal strain-time

profile for n = 2. The strain due to the reflected longitudinal pulse Gr is normalized with
respect to that ofthe incident pulse Gl' It is seen that the symmetrical incident pulse generates
non-symmetrical reflected strain-time profiles for all the three cases, i.e. e= n/6, n/3 and
n/2. In all cases the pulses have rounded corners near the front and have relatively sharp
corners in the regions of unloading. Furthermore, in all cases the durations of the pulses
are elongated to about 90 p,sec. Figure 2 shows the normalized transmitted longitudinal
strain-time profiles for n = 2. The pulse shapes take essentially the same forms as those
shown in the reflected longitudinal pulses, but in the case of reflected longitudinal pulses
the amplitudes increase with the branch angle ewhile the amplitudes of the transmitted
longitudinal pulses decrease with increasing angles (for () = n/2 the transmitted longi-
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FIG. 1. Incident and reflected longitudinal strain pulses (n = 2).

tudinal pulse is identically zero). For the reflected pulses the normalized amplitudes are
always less than 1, while for the transmitted pulse the ratio ofthe amplitudes can be greater
than, equal to or less than 1. Which of these occurs depends on the ratios of the cross­
sectional areas of the branches to that of the main rod. Figure 3 shows the normalized
transmitted flexural pulses at a distance of 1 in. from the branch point. For () = 0 the
flexural pulse is identically zero and the amplitudes of the pulses at other angles increase
with increasing angles while the pulse shape at the three angles shown is practically un­
changed.

It is interesting to note that for the case n = 2 and () = n/2, the problem becomes one
ofthe normal impact of a rod on a beam as presented in [6]. The numerical results obtained
from the theory given here are compared with the experimental results as shown in Figs. 4
and 5.

8= 7T/6

20 40 60 80
TIME IN fLSEC

FIG. 2. Transmitted longitudinal strain pulses (n = 2).
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FIG. 3. Transmitted flexural pulses (n = 2).

Figure 4 shows a comparison between the experimental results as found in [6] and the
theoretical results obtained here and shown in Fig. 1 (0 = nI2). The kink in the curve
which was observed experimentally is not predicted by this theory, but it was not predicted
in the theory given in [6] either. One possible reason for this deviation is the use of the
Timoshenko theory which gives only two modes of propagation instead of the infinite
number predicted by the exact theory, also the second mode deviates somewhat from the
second mode of the exact theory. Some other reasons were discussed in [6].
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FIG. 4. Comparison of reflected longitudinal pulses.
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FIG. 5. Comparison of theoretical and experimental strain-time profiles at ¢ = i in.

DISCUSSION

The theory presented in this paper predicts the reflected and the transmitted waves
generated in a symmetrically branched rod, when a longitudinal wave travels down the
rod. By taking advantage of the symmetry, the problem which is in fact three-dimensional
can be reduced to a two-dimensional one and the analysis is thus greatly simplified. The
analysis is applicable to a rod split into n branches lying symmetrically with respect to
the axis of the rod. The branches are assumed to make angles which can vary from 0 to 90°
with the axis. For () = 0° the results agree with those presented by Ripperger and Abram­
son [2J and for () = 90° the results agree well with the experimental results presented in [6J,
where the analysis was carried out with a transform technique. It may prove difficult to
use such a transform technique when the load function is not a step function. Thus the
Fourier synthesis method presented here has certain advantages over the transform
method, as it can be used to solve the problem for arbitrary incident pulse shapes.
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APPENDIX

B** = [2 sin ()f3JA**
t r2 + f32 0

and

where

(Received 17 May 1971; revised 19 October 1971)

AocTpaKT--06cylKll;aeTcH aHallHTl1'leCKH 3all;a'la pacnpOCTpaHeHHH np0Il;OJIbHOH ynpyroH BOllHbI,

Il;BlIlKymell.cll Bll;onb TOHKoro, OIl;HopOIl;Horo CTeplKHll, Ha KOHue KOToporo npHCOe,llJlHeHa pa3BeTJIeHHaH,

CHMMeTpl1'lecKH paCnOJIOlKeHHall CTeplKHeBall CIlCTeMa. YCJIOBlle CIlMMeTpHH O'ieHb ynpomaeT aHaJIH3

H )l;aeT B03MOlKHOCTb o6pa6oTKH 3a.ua'lH KaK .uByxMepHoiL Hcnonb3yeMall TeopHll pacnpOCTpaHeHHH

npo.uonbHblX BonH llBnlleTCll oAHoMepHoll., nOKa paCCMaTpllBaeTCll pacnpOCTpaHeHlle BonHbl H3fH6a Ha

OCHOBe Teopllll TIlMolIleHKIl. OKa3h1BaeTCll, 'ITO 'iIlCneHHble pe3YllbTaTbI, 110JlY'leHbl 110 3TOMy aHanH3Y,

XOpOlIlO COfJlaCoByIDTCH C 3KCITepHMeHTaJlbHblMIl Ha6,lIDAeHIlHMIl.


